Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cancer Imaging ; 24(1): 59, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720384

RESUMEN

BACKGROUND: To develop a magnetic resonance imaging (MRI)-based radiomics signature for evaluating the risk of soft tissue sarcoma (STS) disease progression. METHODS: We retrospectively enrolled 335 patients with STS (training, validation, and The Cancer Imaging Archive sets, n = 168, n = 123, and n = 44, respectively) who underwent surgical resection. Regions of interest were manually delineated using two MRI sequences. Among 12 machine learning-predicted signatures, the best signature was selected, and its prediction score was inputted into Cox regression analysis to build the radiomics signature. A nomogram was created by combining the radiomics signature with a clinical model constructed using MRI and clinical features. Progression-free survival was analyzed in all patients. We assessed performance and clinical utility of the models with reference to the time-dependent receiver operating characteristic curve, area under the curve, concordance index, integrated Brier score, decision curve analysis. RESULTS: For the combined features subset, the minimum redundancy maximum relevance-least absolute shrinkage and selection operator regression algorithm + decision tree classifier had the best prediction performance. The radiomics signature based on the optimal machine learning-predicted signature, and built using Cox regression analysis, had greater prognostic capability and lower error than the nomogram and clinical model (concordance index, 0.758 and 0.812; area under the curve, 0.724 and 0.757; integrated Brier score, 0.080 and 0.143, in the validation and The Cancer Imaging Archive sets, respectively). The optimal cutoff was - 0.03 and cumulative risk rates were calculated. DATA CONCLUSION: To assess the risk of STS progression, the radiomics signature may have better prognostic power than a nomogram/clinical model.


Asunto(s)
Progresión de la Enfermedad , Imagen por Resonancia Magnética , Nomogramas , Sarcoma , Humanos , Sarcoma/diagnóstico por imagen , Sarcoma/cirugía , Sarcoma/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Aprendizaje Automático , Pronóstico , Adulto Joven , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/cirugía , Neoplasias de los Tejidos Blandos/patología , Curva ROC , Radiómica
2.
Heliyon ; 10(9): e29875, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720718

RESUMEN

Objective: To explore the application of multiparametric MRI-based radiomic nomogram for assessing HER-2 2+ status of breast cancer (BC). Methods: Patients with pathology-proven HER-2 2+ invasive BC, who underwent preoperative MRI were divided into training (72 patients, 21 HER-2-positive and 51 HER-2-negative) and validation (32 patients, 9 HER-2-positive and 23 HER-2-negative) sets by randomization. All were classified as HER-2 2+ FISH-positive (HER-2-positive) or -negative (HER-2-negative) according to IHC and FISH. The 3D VOI was drawn on MR images by two radiologists. ADC, T2WI, and DCE images were analyzed separately to extract features (n = 1906). L1 regularization, F-test, and other methods were used to reduce dimensionality. Binary radiomics prediction models using features from single or combined imaging sequences were constructed using logistic regression (LR) classifier then and validated on a validation dataset. To build a radiomics nomogram, multivariate LR analysis was conducted to identify independent indicators. An evaluation of the model's predictive efficacy was made using AUC. Results: On the basis of combined ADC, T2WI, and DCE images, ten radiomic features were extracted following feature dimensionality reduction. There was superior diagnostic efficiency of radiomic signature using all three sequences compared to either one or two sequences (AUC for training group: 0.883; AUC for validation group: 0.816). Based on multivariate LR analysis, radiomic signature and peritumoral edema were independent predictors for identifying HER-2 2 +. In both training and validation datasets, nomograms combining peritumoral edema and radiomics signature demonstrated an effective discrimination (AUCs were respectively 0.966 and 0. 884). Conclusion: The nomogram that incorporated peritumoral edema and multiparametric MRI-based radiomic signature can be used to effectively predict the HER-2 2+ status of BC.

3.
Quant Imaging Med Surg ; 14(4): 2993-3005, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617165

RESUMEN

Background: It is crucial to distinguish unstable from stable intracranial aneurysms (IAs) as early as possible to derive optimal clinical decision-making for further treatment or follow-up. The aim of this study was to investigate the value of a deep learning model (DLM) in identifying unstable IAs from computed tomography angiography (CTA) images and to compare its discriminatory ability with that of a conventional logistic regression model (LRM). Methods: From August 2011 to May 2021, a total of 1,049 patients with 681 unstable IAs and 556 stable IAs were retrospectively analyzed. IAs were randomly divided into training (64%), internal validation (16%), and test sets (20%). Convolutional neural network (CNN) analysis and conventional logistic regression (LR) were used to predict which IAs were unstable. The area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the discriminating ability of the models. One hundred and ninety-seven patients with 229 IAs from Banan Hospital were used for external validation sets. Results: The conventional LRM showed 11 unstable risk factors, including clinical and IA characteristics. The LRM had an AUC of 0.963 [95% confidence interval (CI): 0.941-0.986], a sensitivity, specificity and accuracy on the external validation set of 0.922, 0.906, and 0.913, respectively, in predicting unstable IAs. In predicting unstable IAs, the DLM had an AUC of 0.771 (95% CI: 0.582-0.960), a sensitivity, specificity and accuracy on the external validation set of 0.694, 0.929, and 0.782, respectively. Conclusions: The CNN-based DLM applied to CTA images did not outperform the conventional LRM in predicting unstable IAs. The patient clinical and IA morphological parameters remain critical factors for ensuring IA stability. Further studies are needed to enhance the diagnostic accuracy.

5.
Acad Radiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508934

RESUMEN

RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set. MATERIALS AND METHODS: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center. RESULTS: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models. CONCLUSION: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.

6.
J Transl Med ; 22(1): 289, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494492

RESUMEN

BACKGROUND: Global myopia prevalence poses a substantial public health burden with vision-threatening complications, necessitating effective prevention and control strategies. Precise prediction of spherical equivalent (SE), myopia, and high myopia onset is vital for proactive clinical interventions. METHODS: We reviewed electronic medical records of pediatric and adolescent patients who underwent cycloplegic refraction measurements at the Eye & Ear, Nose, and Throat Hospital of Fudan University between January 2005 and December 2019. Patients aged 3-18 years who met the inclusion criteria were enrolled in this study. To predict the SE and onset of myopia and high myopia in a specific year, two distinct models, random forest (RF) and the gradient boosted tree algorithm (XGBoost), were trained and validated based on variables such as age at baseline, and SE at various intervals. Outputs included SE, the onset of myopia, and high myopia up to 15 years post-initial examination. Age-stratified analyses and feature importance assessments were conducted to augment the clinical significance of the models. RESULTS: The study enrolled 88,250 individuals with 408,255 refraction records. The XGBoost-based SE prediction model consistently demonstrated robust and better performance than RF over 15 years, maintaining an R2 exceeding 0.729, and a Mean Absolute Error ranging from 0.078 to 1.802 in the test set. Myopia onset prediction exhibited strong area under the curve (AUC) values between 0.845 and 0.953 over 15 years, and high myopia onset prediction showed robust AUC values (0.807-0.997 over 13 years, with the 14th year at 0.765), emphasizing the models' effectiveness across age groups and temporal dimensions on the test set. Additionally, our classification models exhibited excellent calibration, as evidenced by consistently low brier score values, all falling below 0.25. Moreover, our findings underscore the importance of commencing regular examinations at an early age to predict high myopia. CONCLUSIONS: The XGBoost predictive models exhibited high accuracy in predicting SE, onset of myopia, and high myopia among children and adolescents aged 3-18 years. Our findings emphasize the importance of early and regular examinations at a young age for predicting high myopia, thereby providing valuable insights for clinical practice.


Asunto(s)
Miopía , Refracción Ocular , Adolescente , Niño , Humanos , Miopía/diagnóstico , Miopía/epidemiología , Preescolar
7.
J Imaging Inform Med ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332402

RESUMEN

This study aimed to assess the performance of a deep learning algorithm in helping radiologist achieve improved efficiency and accuracy in chest radiograph diagnosis. We adopted a deep learning algorithm to concurrently detect the presence of normal findings and 13 different abnormalities in chest radiographs and evaluated its performance in assisting radiologists. Each competing radiologist had to determine the presence or absence of these signs based on the label provided by the AI. The 100 radiographs were randomly divided into two sets for evaluation: one without AI assistance (control group) and one with AI assistance (test group). The accuracy, false-positive rate, false-negative rate, and analysis time of 111 radiologists (29 senior, 32 intermediate, and 50 junior) were evaluated. A radiologist was given an initial score of 14 points for each image read, with 1 point deducted for an incorrect answer and 0 points given for a correct answer. The final score for each doctor was automatically calculated by the backend calculator. We calculated the mean scores of each radiologist in the two groups (the control group and the test group) and calculated the mean scores to evaluate the performance of the radiologists with and without AI assistance. The average score of the 111 radiologists was 597 (587-605) in the control group and 619 (612-626) in the test group (P < 0.001). The time spent by the 111 radiologists on the control and test groups was 3279 (2972-3941) and 1926 (1710-2432) s, respectively (P < 0.001). The performance of the 111 radiologists in the two groups was evaluated by the area under the receiver operating characteristic curve (AUC). The radiologists showed better performance on the test group of radiographs in terms of normal findings, pulmonary fibrosis, heart shadow enlargement, mass, pleural effusion, and pulmonary consolidation recognition, with AUCs of 1.0, 0.950, 0.991, 1.0, 0.993, and 0.982, respectively. The radiologists alone showed better performance in aortic calcification (0.993), calcification (0.933), cavity (0.963), nodule (0.923), pleural thickening (0.957), and rib fracture (0.987) recognition. This competition verified the positive effects of deep learning methods in assisting radiologists in interpreting chest X-rays. AI assistance can help to improve both the efficacy and efficiency of radiologists.

8.
J Xray Sci Technol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38306089

RESUMEN

PURPOSE: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram. METHODS: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading. RESULTS: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p <  0.05; expanded: 0.89 v.s. 0.81, p <  0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy. CONCLUSIONS: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.

9.
Insights Imaging ; 15(1): 21, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270647

RESUMEN

OBJECTIVE: To establish a model for predicting lymph node metastasis in bladder cancer (BCa) patients. METHODS: We retroactively enrolled 239 patients who underwent three-phase CT and resection for BCa in two centers (training set, n = 185; external test set, n = 54). We reviewed the clinical characteristics and CT features to identify significant predictors to construct a clinical model. We extracted the hand-crafted radiomics features and deep learning features of the lesions. We used the Minimum Redundancy Maximum Relevance algorithm and the least absolute shrinkage and selection operator logistic regression algorithm to screen features. We used nine classifiers to establish the radiomics machine learning signatures. To compensate for the uneven distribution of the data, we used the synthetic minority over-sampling technique to retrain each machine-learning classifier. We constructed the combined model using the top-performing radiomics signature and clinical model, and finally presented as a nomogram. We evaluated the combined model's performance using the area under the receiver operating characteristic, accuracy, calibration curves, and decision curve analysis. We used the Kaplan-Meier survival curve to analyze the prognosis of BCa patients. RESULTS: The combined model incorporating radiomics signature and clinical model achieved an area under the receiver operating characteristic of 0.834 (95% CI: 0.659-1.000) for the external test set. The calibration curves and decision curve analysis demonstrated exceptional calibration and promising clinical use. The combined model showed good risk stratification performance for progression-free survival. CONCLUSION: The proposed CT-based combined model is effective and reliable for predicting lymph node status of BCa patients preoperatively. CRITICAL RELEVANCE STATEMENT: Bladder cancer is a type of urogenital cancer that has a high morbidity and mortality rate. Lymph node metastasis is an independent risk factor for death in bladder cancer patients. This study aimed to investigate the performance of a deep learning radiomics model for preoperatively predicting lymph node metastasis in bladder cancer patients. KEY POINTS: • Conventional imaging is not sufficiently accurate to determine lymph node status. • Deep learning radiomics model accurately predicted bladder cancer lymph node metastasis. • The proposed method showed satisfactory patient risk stratification for progression-free survival.

10.
Insights Imaging ; 15(1): 23, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270724

RESUMEN

BACKGROUND: To investigate whether intratumoral and peritumoral radiomics may predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. METHODS: Clinical, pathological, and CT data from 231 patients with advanced gastric cancer who underwent neoadjuvant chemotherapy at our hospital between July 2014 and February 2022 were retrospectively collected. Patients were randomly divided into a training group (n = 161) and a validation group (n = 70). The support vector machine classifier was used to establish radiomics models. A clinical model was established based on the selected clinical indicators. Finally, the radiomics and clinical models were combined to generate a radiomics-clinical model. ROC analyses were used to evaluate the prediction efficiency for each model. Calibration curves and decision curves were used to evaluate the optimal model. RESULTS: A total of 91 cases were recorded with good response and 140 with poor response. The radiomics model demonstrated that the AUC was higher in the combined model than in the intratumoral and peritumoral models (training group: 0.949, 0.943, and 0.846, respectively; validation group: 0.815, 0.778, and 0.701, respectively). Age, Borrmann classification, and Lauren classification were used to construct the clinical model. Among the radiomics-clinical models, the combined-clinical model showed the highest AUC (training group: 0.960; validation group: 0.843), which significantly improved prediction efficiency. CONCLUSION: The peritumoral model provided additional value in the evaluation of pathological response after neoadjuvant chemotherapy against advanced gastric cancer, and the combined-clinical model showed the highest predictive efficiency. CRITICAL RELEVANCE STATEMENT: Intratumoral and peritumoral radiomics can noninvasively predict the pathological response against advanced gastric cancer after neoadjuvant chemotherapy to guide early treatment decision and provide individual treatment for patients. KEY POINTS: 1. Radiomics can predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. 2. Peritumoral radiomics has additional predictive value. 3. Radiomics-clinical models can guide early treatment decisions and improve patient prognosis.

11.
Cerebrovasc Dis ; 53(1): 105-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37044072

RESUMEN

INTRODUCTION: Diabetes markedly affects the formation and development of intracranial atherosclerosis. The study was aimed at evaluating whether radiomics features can help distinguish plaques primarily associated with diabetes. MATERIALS AND METHODS: We retrospectively analyzed patients who were admitted to our center because of acute ischemic stroke due to intracranial atherosclerosis between 2016 and 2022. Clinical data, blood biomarkers, conventional plaque features, and plaque radiomics features were collected for all patients. Odds ratios (ORs) with 95% confidence intervals (CIs) were determined from logistic regression models. The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to describe diagnostic performance. The DeLong test was used to compare differences between models. RESULTS: Overall, 157 patients (115 men; mean age, 58.7 ± 10.7 years) were enrolled. Multivariate logistic regression analysis showed that plaque length (OR: 1.17; 95% CI: 1.07-1.28) and area (OR: 1.13; 95% CI: 1.02-1.24) were independently associated with diabetes. On combining plaque length and area as a conventional model, the AUCs of the training and validation cohorts for identifying diabetes patients were 0.789 and 0.720, respectively. On combining radiomics features on T1WI and contrast-enhanced T1WI sequences, a better diagnostic value was obtained in the training and validation cohorts (AUC: 0.889 and 0.861). The DeLong test showed the model combining radiomics and conventional plaque features performed better than the conventional model in both cohorts (p < 0.05). CONCLUSIONS: The use of radiomics features of intracranial plaques on high-resolution magnetic resonance imaging can effectively distinguish culprit plaques with diabetes as the primary pathological cause, which will provide new avenues of research into plaque formation and precise treatment.


Asunto(s)
Diabetes Mellitus , Arteriosclerosis Intracraneal , Accidente Cerebrovascular Isquémico , Placa Aterosclerótica , Humanos , Masculino , Persona de Mediana Edad , Anciano , Radiómica , Accidente Cerebrovascular Isquémico/complicaciones , Placa Aterosclerótica/complicaciones , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Diabetes Mellitus/diagnóstico , Arteriosclerosis Intracraneal/complicaciones , Arteriosclerosis Intracraneal/diagnóstico por imagen
12.
Radiol Med ; 129(2): 229-238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108979

RESUMEN

BACKGROUND: The accurate identification and evaluation of lymph nodes by CT images is of great significance for disease diagnosis, treatment, and prognosis. PURPOSE: To assess the lymph nodes' segmentation, size, and station by artificial intelligence (AI) for unenhanced chest CT images and evaluate its value in clinical scenarios. MATERIAL AND METHODS: This retrospective study proposed an end-to-end Lymph Nodes Analysis System (LNAS) consisting of three models: the Lymph Node Segmentation model (LNS), the Mediastinal Organ Segmentation model (MOS), and the Lymph Node Station Registration model (LNR). We selected a healthy chest CT image as the template image and annotated 14 lymph node station masks according to the IASLC to build the lymph node station mapping template. The exact contours and stations of the lymph nodes were annotated by two junior radiologists and reviewed by a senior radiologist. Patients aged 18 and above, who had undergone unenhanced chest CT and had at least one suspicious enlarged mediastinal lymph node in imaging reports, were included. Exclusions were patients who had thoracic surgeries in the past 2 weeks or artifacts on CT images affecting lymph node observation by radiologists. The system was trained on 6725 consecutive chest CTs that from Tianjin Medical University General Hospital, among which 6249 patients had suspicious enlarged mediastinal lymph nodes. A total of 519 consecutive chest CTs from Qilu Hospital of Shandong University (Qingdao) were used for external validation. The gold standard for each CT was determined by two radiologists and reviewed by one senior radiologist. RESULTS: The patient-level sensitivity of the LNAS system reached of 93.94% and 92.89% in internal and external test dataset, respectively. And the lesion-level sensitivity (recall) reached 89.48% and 85.97% in internal and external test dataset. For man-machine comparison, AI significantly apparently shortened the average reading time (p < 0.001) and had better lesion-level and patient-level sensitivities. CONCLUSION: AI improved the sensitivity lymph node segmentation by radiologists with an advantage in reading time.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Tomografía Computarizada por Rayos X/métodos
13.
EClinicalMedicine ; 66: 102352, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094161

RESUMEN

Background: Accurate stratification of recurrence risk for bladder cancer (BCa) is essential for precise individualized therapy. This study aimed to develop and validate a model for predicting the risk of recurrence in BCa patients postoperatively using 3-phase enhanced CT images. Methods: We retrospectively enrolled 874 BCa patients across four centers between January 2006 and December 2021. Patients from one center were used as training set, while the remaining patients went into the validation set. We trained a deep learning (DL) model based on convolutional neural networks using 3-phase enhanced CT images. The resulting prediction scores were entered into Cox regression analysis to obtain DL scores and construct a DL signature. DL scores and clinical features were then used as deep learning radioclinical signature. The predictive performance of DL signature was assessed according to concordance index and area under curve compared with deep learning radioclinical signature, clinical model and a widely accepted staging grading system. Recurrence-free survival (RFS) and overall survival (OS) were also predicted in order to further assess survival benefits. Findings: DL signature showed strong power for predicting recurrence (concordance index, 0.869; area under curve, 0.889) in validation set, outperforming other models and system. In addition, we divided RFS and OS into high and low risk groups by selecting appropriate cutoff values for DL signature, and calculated cumulative recurrence risk rates for both groups. Interpretation: Our proposed DL signature shows promising potential as clinical aid for predicting postoperative recurrence risk in BCa and for stratifying the risk of RFS and OS, which can be applied to guide personalized precision therapy. Funding: There are no sources of funding for this manuscript.

14.
Acad Radiol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993304

RESUMEN

RATIONALE AND OBJECTIVES: Tumor progression and recurrence(P/R)after surgical resection are common in meningioma patients and can indicate poor prognosis. This study aimed to investigate the values of clinicopathological information and preoperative magnetic resonance imaging (MRI) radiomics in predicting P/R and progression-free survival (PFS) in meningioma patients. METHODS AND MATERIALS: A total of 169 patients with pathologically confirmed meningioma were included in this study, 54 of whom experienced P/R. Clinicopathological information, including age, gender, Simpson grading, World Health Organization (WHO) grading, Ki-67 index, and radiotherapy history, as well as preoperative traditional radiographic findings and radiomics features for each MRI modality (T1-weighted, T2-weighted, and enhanced T1-weighted images) were initially extracted. After feature selection, the optimal performance was estimated among the models established using different feature sets. Finally, Cox survival analysis was further used to predict PFS. RESULTS: Ki-67 index, Simpson grading, WHO grading, and radiotherapy history were found to be independent predictors for P/R in the multivariate regression analysis. This clinicopathological model had an area under the curve (AUC) of 0.865 and 0.817 in the training and testing sets, respectively. The performance of the combined radiomics model reached 0.85 and 0.84, respectively. A clinicopathological-radiomics model was then established, which significantly improved the prediction of meningioma P/R (AUC = 0.93 and 0.88, respectively). Finally, the risk ratio was estimated for each selected feature, and the C-index of 0.749 was obtained. CONCLUSION: Radiomics signatures of preoperative MRI have the ability to predict meningioma at the risk of P/R. By integrating clinicopathological information, the best performance was achieved.

15.
Cancer Imaging ; 23(1): 89, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723572

RESUMEN

BACKGROUND: To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively. METHODS: We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: The support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature. CONCLUSION: The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Vejiga Urinaria , Humanos , Nomogramas , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X
16.
BMC Oral Health ; 23(1): 548, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559074

RESUMEN

BACKGROUND: The purpose of this study was to identify neurogenic tumours and pleomorphic adenomas of the parapharyngeal space based on the texture characteristics of MRI-T2WI. METHODS: MR findings and pathological reports of 25 patients with benign tumours in the parapharyngeal space were reviewed retrospectively (13 cases with pleomorphic adenomas and 12 cases with neurogenic tumours). Using PyRadiomics, the texture of the region of interest in T2WI sketched by radiologists was analysed. By using independent sample t-tests and Mann‒Whitney U tests, the selected texture features of 36 Gray Level Co-Occurrence Matrix (GLCM) and Gray Level Dependence Matrix (GLDM) were tested. A set of parameters of texture features showed statistically significant differences between the two groups, which were selected, and the diagnostic efficiency was evaluated via the operating characteristic curve of the subjects. RESULTS: The differences in the three parameters - small dependence low level emphasis (SDLGLE), low level emphasis (LGLE) and difference variance (DV) of characteristics - between the two groups were statistically significant (P < 0.05). No significant difference was found in the other indices. ROC curves were drawn for the three parameters, with AUCs of 0.833, 0.795, and 0.744, respectively. CONCLUSIONS: There is a difference in the texture characteristic parameters based on magnetic resonance T2WI images between neurogenic tumours and pleomorphic adenomas in the parapharyngeal space. For the differential diagnosis of these two kinds of tumours, texture analysis of significant importance is an objective and quantitative analytical tool.


Asunto(s)
Adenoma Pleomórfico , Humanos , Adenoma Pleomórfico/diagnóstico por imagen , Adenoma Pleomórfico/patología , Estudios Retrospectivos , Espacio Parafaríngeo/patología , Imagen por Resonancia Magnética , Diagnóstico Diferencial
17.
Insights Imaging ; 14(1): 118, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405591

RESUMEN

PURPOSE: To develop a noninvasive radiomics-based nomogram for identification of disagreement in pathology between endoscopic biopsy and postoperative specimens in gastric cancer (GC). MATERIALS AND METHODS: This observational study recruited 181 GC patients who underwent pre-treatment computed tomography (CT) and divided them into a training set (n = 112, single-energy CT, SECT), a test set (n = 29, single-energy CT, SECT) and a validation cohort (n = 40, dual-energy CT, DECT). Radiomics signatures (RS) based on five machine learning algorithms were constructed from the venous-phase CT images. AUC and DeLong test were used to evaluate and compare the performance of the RS. We assessed the dual-energy generalization ability of the best RS. An individualized nomogram combined the best RS and clinical variables was developed, and its discrimination, calibration, and clinical usefulness were determined. RESULTS: RS obtained with support vector machine (SVM) showed promising predictive capability with AUC of 0.91 and 0.83 in the training and test sets, respectively. The AUC of the best RS in the DECT validation cohort (AUC, 0.71) was significantly lower than that of the training set (Delong test, p = 0.035). The clinical-radiomic nomogram accurately predicted pathologic disagreement in the training and test sets, fitting well in the calibration curves. Decision curve analysis confirmed the clinical usefulness of the nomogram. CONCLUSION: CT-based radiomics nomogram showed potential as a clinical aid for predicting pathologic disagreement status between biopsy samples and resected specimens in GC. When practicability and stability are considered, the SECT-based radiomics model is not recommended for DECT generalization. CRITICAL RELEVANCE STATEMENT: Radiomics can identify disagreement in pathology between endoscopic biopsy and postoperative specimen.

18.
Br J Radiol ; 96(1150): 20230187, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37393531

RESUMEN

OBJECTIVE: To develop and validate predictive models based on Ki-67 index, radiomics, and Ki-67 index combined with radiomics for survival analysis of patients with clear cell renal cell carcinoma. METHODS: This study enrolled 148 patients who were pathologically diagnosed as ccRCC between March 2010 and December 2018 at our institute. All tissue sections were collected and immunohistochemical staining was performed to calculate Ki-67 index. All patients were randomly divided into the training and validation sets in a 7:3 ratio. Regions of interests (ROIs) were segmented manually. Radiomics features were selected from ROIs in unenhanced, corticomedullary, and nephrographic phases. Multivariate Cox models based on the Ki-67 index and radiomics and univariate Cox models based on the Ki-67 index or radiomics alone were built; the predictive power was evaluated by the concordance (C)-index, integrated area under the curve, and integrated Brier Score. RESULTS: Five features were selected to establish the prediction models of radiomics and combined model. The C-indexes of Ki-67 index model, radiomics model, and combined model were 0.741, 0.718, and 0.782 for disease-free survival (DFS); 0.941, 0.866, and 0.963 for overall survival, respectively. The predictive power of combined model was the best in both training and validation sets. CONCLUSION: The survival prediction performance of combined model was better than Ki-67 model or radiomics model. The combined model is a promising tool for predicting the prognosis of patients with ccRCC in the future. ADVANCES IN KNOWLEDGE: Both Ki-67 and radiomics have showed giant potential in prognosis prediction. There are few studies to investigate the predictive ability of Ki-67 combined with radiomics. This study intended to build a combined model and provide a reliable prognosis for ccRCC in clinical practice.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Supervivencia sin Enfermedad , Antígeno Ki-67 , Neoplasias Renales/diagnóstico por imagen , Supervivencia sin Progresión , Estudios Retrospectivos
19.
J Shoulder Elbow Surg ; 32(12): e624-e635, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37308073

RESUMEN

BACKGROUND: The best-fitting circle drawn by computed tomography (CT) reconstruction of the en face view of the glenoid bone to measure the bone defect is widely used in clinical application. However, there are still some limitations in practical application, which can prevent the achievement of accurate measurements. This study aimed to accurately and automatically segment the glenoid from CT scans based on a 2-stage deep learning model and to quantitatively measure the glenoid bone defect. MATERIALS AND METHODS: Patients who were referred to our institution between June 2018 and February 2022 were retrospectively reviewed. The dislocation group consisted of 237 patients with a history of ≥2 unilateral shoulder dislocations within 2 years. The control group consisted of 248 individuals with no history of shoulder dislocation, shoulder developmental deformity, or other disease that may lead to abnormal morphology of the glenoid. All patients underwent CT examination with a 1-mm slice thickness and a 1-mm increment, including complete imaging of the bilateral glenoid. A residual neural network (ResNet) location model and a U-Net bone segmentation model were constructed to develop an automated segmentation model for the glenoid from CT scans. The data set was randomly divided into training (201 of 248) and test (47 of 248) data sets of control-group data and training (190 of 237) and test (47 of 237) data sets of dislocation-group data. The accuracy of the stage 1 (glenoid location) model, the mean intersection-over-union value of the stage 2 (glenoid segmentation) model, and the glenoid volume error were used to assess the performance of the model. The R2 value and Lin concordance correlation coefficient were used to assess the correlation between the prediction and the gold standard. RESULTS: A total of 73,805 images were obtained after the labeling process, and each image was composed of CT images of the glenoid and its corresponding mask. The average overall accuracy of stage 1 was 99.28%; the average mean intersection-over-union value of stage 2 was 0.96. The average glenoid volume error between the predicted and true values was 9.33%. The R2 values of the predicted and true values of glenoid volume and glenoid bone loss (GBL) were 0.87 and 0.91, respectively. The Lin concordance correlation coefficient value of the predicted and true values of glenoid volume and GBL were 0.93 and 0.95, respectively. CONCLUSION: The 2-stage model in this study showed a good performance in glenoid bone segmentation from CT scans and could quantitatively measure GBL, providing a data reference for subsequent clinical treatment.


Asunto(s)
Aprendizaje Profundo , Inestabilidad de la Articulación , Luxación del Hombro , Articulación del Hombro , Humanos , Articulación del Hombro/diagnóstico por imagen , Estudios Retrospectivos , Imagenología Tridimensional , Luxación del Hombro/diagnóstico por imagen , Tomografía Computarizada por Rayos X
20.
Int J Surg ; 109(7): 1980-1992, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132183

RESUMEN

BACKGROUND: Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients. METHODS: LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics. RESULTS: A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set. CONCLUSION: The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.


Asunto(s)
Aprendizaje Profundo , Neoplasias Primarias Secundarias , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/tratamiento farmacológico , Estudios Retrospectivos , Terapia Neoadyuvante , Pronóstico , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...